
Mike Hahn - hahnbytes@gmail.com

Euphesta
Euphesta is the website which distributes and monetizes the Euphegram programming language. The
Euphegram engine (called Eugene) enables Euphegram software to run on laptops and smartphones.
EUGENE is short for EUpheGram ENginE. End-users and developers pay $10/year to use the Eugene
smartphone app in free-form mode (try it 90 days for free). Anyone can use it in monospaced mode for
free. Euphegram software can be enhanced with plugins, which are written in Euphegram (often by end-
users) and interface with the main Euphegram app. EUPHESTA stands for End-User Programming
Handles Execution of S-expression Tokens and Algorithms. Euphesta will eventually run on 5 operating
systems: Windows, Mac, Linux, Android, and iOS.

Terminology

Euphenodes are smartphone apps written fully or partially in Euphegram. Euphesites are Euphenodes
written mostly in EGML, or EupheGram Markup Language. Eupheteers are Euphegram users.
Euphegeeks are authors of Euphenodes and Euphesites. Eupheteers can visit Euphesites without having
to install them on their phones. Eupheteers and Euphegeeks pay $10/year to make use of Eugene for
Android in free-form mode. Euphenodes written fully in Euphegram are executed by the Eugene
smartphone app. Euphenodes written partially in Euphegram and partially in Java are bundled with
Eugene.

Competition

Euphesta competes with 2 free tools, Kivy and React Native. Kivy is used to develop Python apps on
desktop and mobile platforms. React Native (JavaScript instead of Python) is supported by Meta and is
superior to Kivy for mobile app development. Both of these 2 competitors lack support for end-user
programming. Euphesta's freemium business model enables multiple programmers to be hired using
funds raised by the angel investor.

Monospaced Mode

In monospaced mode, all characters in a given panel are the same size, and adjacent cells in a given
panel may be merged to form a subpanel. Panels and subpanels can contain a graphic or a block of text.
Different panels containing text need not share the same font size. In math mode, subscripts and
superscripts are offset vertically by half the height of a character cell. Free-form mode is similar to normal
HTML which may contain variable-width and variable-size fonts, combined together in an arbitrary
fashion.

Euphegram to Java

A conversion tool is used to convert Euphegram code to Java. Since Java is statically typed and
Euphegram is dynamically typed, data types in Euphegram are understood to be denoted by the initial
letter of the variable or function name. This only applies to Euphegram code which needs to be converted
to Java. The initial letter prefix is lower case and is always followed by an upper case letter. Integers,
longs, and booleans have a 'i', 'j' or 'b' prefix, respectively. Doubles, char, and strings have a 'd', 'c' or 's'
prefix, respectively. Byte, short, and float types are not supported.

Exit Strategy

In case Euphesta is unprofitable, Euphegeeks can bundle their Euphegram code with Eugene, hosting
their apps elsewhere. They have the option of distributing their code in the Euphegram version of byte
code, which is hard to reverse engineer. The closed source versions of Eugene will become open source.
Backup project is a tool used for teaching math called Eupheteach.

Page 1

http://treenimation.net/euphesta/index.html

Revenue and Expenses

Eupheteers and Euphegeeks pay $10/year to make use of Eugene for Android in free-form mode. The
free-form versions of Eugene for Android and iOS are closed source. All other versions of Eugene are
open source.

Hosting Fees

Euphegeeks must pay hosting fees for bandwidth (in GBs) and memory usage (in mega-nodes). Below a
bandwidth/memory usage threshold of T or T', respectively, hosting is free. For bandwidth usage of TR^N
and memory usage of T'(R')^N', the monthly hosting fee is H plus H', where:

H = $10(N + 1) and H' = $5(N' + 1)

The values of R and R' are initially set to 4, but may vary from quarter to quarter. Also the values of T and
T' may vary from time to time. The N and N' values are always non-negative integers.

Contributors

All contributors to the development of Euphegram and Euphesta fall into 4 classes. Class 1 includes the
founder and the angel investor, who each receive 10 percent of equity. Class 2 includes serious
contributors. The maximum number of Class 2 Members is 10, and they each receive an equal share of
30 percent of equity. Class 3 includes anyone who fixes at least one bug or implements at least one
feature, and that feature is included in a production version of Euphegram. Class 4 includes anyone who
discovers a bug or suggests a feature which is included in a production version of Euphegram. Trivial
bugs/features such as typos and color changes don't count. Each Class 3 Member receives twice the
equity of a Class 4 Member. The union of the sets of Class 3 and Class 4 Members receives at least 50
percent of equity.

No contributor can receive more than 10 percent of equity, unless there are fewer than 10 contributors, in
which case each contributor receives an equal share of equity. In case each Class 3 Member receives
more than a Class 2 Member, then the amount of equity of the Class 2 Members is increased beyond 30
percent, so that all Class 2 and 3 Members receive the same amount of equity. In case no angel investor
is found, the founder receives 20 percent of equity. Each contributor receives a share of the profits in a
given quarter equal to the amount of equity they possess.

About Us

I am Mike Hahn, the founder of Euphesta.com. I was previously employed at Brooklyn Computer Systems
as a Delphi Programmer and a Technical Writer (I worked there between 1996 and 2013). At the end of
2014 I quit my job as a volunteer tutor at Fred Victor on Tuesday afternoons, where for 5 years I taught
math, computers, and literacy, and became a volunteer math/computer tutor at West Neighbourhood
House. I quit that job in mid-2019. I have a part-time job working for a perfume store. My hobbies are
reading and I often go for walks. I don't read books very often, but on March 19, 2021 I started reading a
biography of Steve Jobs which my brother gave me. I read the CBC news website, news/tech articles on
my Flipboard app, and miscellaneous articles on my phone (same screen as my Google web page). I visit
my brother about once a month.

Contact Info

Mike Hahn
Founder
Euphesta.com
2495 Dundas St. West
Ste. 515
Toronto, ON M6P 1X4

Phone: 416-533-4417
Email: hahnbytes (AT) gmail (DOT) com
Web: treenimation.net /hahnbyte s/
Country: Canada

Page 2

http://treenimation.net/hahnbytes/index.html
http://treenimation.net/hahnbytes/index.html
http://treenimation.net/hahnbytes/index.html

Implementation Steps

1. Develop foundation of Euphegram code execution - done!
2. Develop rest of Euphegram code execution
3. Release Euphegram as console-based compiler on GitHub
4. Implement GUI: monospaced mode
5. Release Euphegram/GUI on GitHub
6. Write EGML design specs
7. Develop EGML
8. Integrate Euphegram with EGML
9. Euphegram/EGML: EUGENE is short for EUpheGram ENginE
10. Eugene is open source
11. Develop Euphegram code editor
12. Expand code editor to Euphegram SDK
13. Develop monetizing functionality
14. Perform beta testing
15. Launch website
16. Purchase Google AdWords advertising
17. Features to add later:

1. Implement Keyboard Aid (bells and whistles of editor)
2. Develop WYSIWYG EGML screen editor
3. Develop Euphegram-to-Java converter

18. Recruit Android programmer
19. Make pitch to DMZ tech incubator at Ryerson University
20. Search for angel investor
21. Port system to Android
22. Eugene for Android (free-form version) is closed source
23. Convert Eugene to Swift
24. Port system to iOS
25. In case Euphesta is profitable:

◦ Skip the following steps
26. Backup project: Eupheteach (exit strategy for Euphesta)
27. Make Eugene completely open source
28. Euphenodes hosted elsewhere
29. Implement Euphegrid using Euphegram (closed source)
30. Implement algebraic expression handler of Euphegrid using Euphegram
31. Perform beta testing using West Neighbourhood House
32. Launch website: Eupheteach.com

Eupheteach

Eupheteach is a tool used for teaching various subjects, including such STEM subjects as math and
coding, and is implemented in Java. The student's laptop displays the Euphegrid, a specialized
whiteboard, and the tutor's smartphone displays a window: a partial copy of the student's screen. For
some subjects, the student displays the Euphedesk, which is not limited to monospaced text. An always-
on-top chat window (or a simultaneous phone conversation) facilitates the student's questions and the
tutor's instructions, in case the tutor is non-local, otherwise Bluetooth provides connectivity. The core
Euphegrid is free for all users. Tutors and students pay $20 and $10/year respectively to access the
Euphedesk, or to access the power Euphegrid (extended with Euphegram code). EUPHETeach is short
for End-User Programming Helps Education by Tutors.

Euphegrid

The Euphegrid supports math being taught, using text in monospaced mode. Adjacent character cells can
be merged. Single cells or merged cells can contain either monospaced text or graphics. Superscripts are
offset vertically by half a character cell. All functionality is written in a Python-like language called
Euphegram, itself implemented in Java. The most commonly used commands are as follows:

• Use the arrow keys to move the cursor.
• Type underscore(s) to underline the numerator of a fraction.

Page 3

• Use the special character command (Ctrl+K) to insert special characters such as pi, square root,
sum, and integral.

• Use Tab/Shift+Tab to display/undo the next step in the math problem being solved.
• Type question mark (?) to explain the current step or to break the current step down into lower-

level steps.
• Click on Help after typing question mark to access the help system.

Miscellaneous commands:

• Use asterisk and slash for multiply and divide.
• Fractions or matrices enclosed in brackets use tall brackets.
• Smart down/up arrow: press it after inserting a character moves the cursor beneath/above that

character.
• Functions such as lines and parabolas can be plotted interactively on a graph. Text in core

Euphegrid-based graphs is limited to digits and a limited number (say 30) of uppercase letters.
• The default-to-upper-case setting assumes that all letters entered are upper case (use the shift

key to enter a lower case letter), so Caps Lock is unnecessary.

Euphedesk:

• Display screen based on EGML: EupheGram Markup Language
• May include panels, and those panels may contain Euphegrids

Expression Language

Mathematical expressions are encoded (internally) using the Euphegram programming language. Each
step in the math problem being solved manipulates this Euphegram expression. Even if the user enters
steps in a different order than the default ordering, the simplification logic can handle that. The user can
type Tab/Shift+Tab to redo/undo her previous step, as well as to redo/undo the computer's previous step.

Computer Demos

Eupheteach can be used to teach computer skills. The student's laptop runs the practise demos featuring
screenshots, cursor animation, and always-on-top yellow windows with black text. The yellow windows
contain instructions to the student, and the tutor's smartphone is in sync with the student. The student can
also run live demos including yellow windows, with MS Office, Chrome, or other applications running
beneath the yellow windows. During the live demos, the tutor's smartphone is also in sync with the
student.

Advanced Euphegrid Commands

These next 2 paragraphs may be ignored, they are written in computerese. Use Shift+Arrow Key to
highlight a rectangular block. Press Insert to insert a row or column of spaces before a highlighted block
(insert blank line if no highlight). Press Shift+Insert/Delete to insert/delete an entire row/column when a
block is highlighted. Press Enter at end of a line of text: insert blank line, back up on that line to line up
with beginning of text on previous line. Press Enter on blank line to back up to line up with beginning of
text on a previous line, or insert blank line if already at beginning of line. Press Ctrl+Tab to move forward
to line up with beginning of first or next word on a previous line. Press Home to move to beginning of text
on current line, press it again to toggle between beginning of line and beginning of text. This usage of
Enter, Tab and Home is useful for editing program code with multiple indentation levels. The user doesn't
have to memorize these commands: type question mark at any time to access the help system.

Superscripts

Superscripts and subscripts in monospaced mode are handled by employing a vertical offset of half a line
per level of superscripting or subscripting. The caret symbol (^) is used as a superscript prefix, double-
caret (^^) is used as a subscript prefix, and backslash (\) is used as an escape character (terminate
super/subscript with a semicolon). Carets and double-carets cannot be mixed (exception: one level of
superscript can be combined with one level of subscript).

Page 4

Euphegram

Euphegram (implemented in Java) is an open source Python dialect in which all operators precede their
operands, and parentheses are used for all grouping (except string literals, which are delimited with
double quotes, also statements are separated by semicolons). Euphegram source files have a .EGRM
extension. EGML files (the sister language of Euphegram: EupheGram Markup Language) have a .EGML
extension. Euphegram boasts an ultra-simple Lisp-like syntax unlike all other languages.

Special Characters

Core:
• () grouping
• - word separator
• ; end of stmt.
• : dot operator
• " string delimiter
• \ escape char.

Operators:
• + - * / %
• = < >
• & | ^ ~ ! ?

Other:
• # comment
• {} block comment
• _ used in identifiers
• $ string prefix char.

Differences from Python

• Parentheses, not whitespace
• Operators come before their operands
• Integration with EGML
• Information hiding (public/private)
• Single, not multiple inheritance
• Adds interfaces ("hedron" defs.)
• Drops iterators and generators
• Adds lambdas
• Adds quote and list-compile functions, treating code as data
• Adds cons, car and cdr functionality

Keyboard Aid

This optional feature enables hyphens, open parentheses, and close parentheses to be entered by typing
semicolons, commas, and periods, respectively. When enabled, keyboard aid can be temporarily
suppressed by using the Ctrl key in conjunction with typing semicolons, commas, and periods (no
character substitution takes place). By convention, hyphens are used to separate words in multi-word
identifiers, but semicolons are easier to type than hyphens. Similarly, commas and periods are easier to
type than parentheses. Typing semicolon converts previous hyphen to a semicolon, and previous
semicolon to a hyphen (use the Ctrl key to override this behaviour). Typing semicolon after close
parenthesis simply inserts semicolon. Typing space after hyphen at end of identifier converts hyphen to
underscore. The close delim switch automatically inserts a closing parenthesis/brace/double quote when
the open delimiter is inserted.

EGML

EGML is a simplified markup language used to replace HTML. Mock JSON files using EGML syntax have
a .EGJS extension, and include no commas. Instead of myid: val, use [myid: val]. Instead of [1, 2, 3], use
[arr: [: 1][: 2][: 3]]. Arbitrary EGML code can be embedded in the Euphegram echo statement. EGML
syntax, where asterisk (*) means occurs zero or more times, is defined as follows:

Tags:
• [tag]
• [tag (fld val)*: body]
• [tag (fld val)*| body |tag]

Body:
• text
• [(fld val)*: text]*

Euphegram call:
• [expr: <expr>]
• [exec: <stmt>...]
• [egrm: <path>]

Note: for fld = style, corresponding val = (fld val)*

Page 5

Euphegram Grammar

White space occurs between tokens (parentheses and semicolons count as white space).

Grammar Notation

 Non-terminal symbol: <symbol>
 Optional text in brackets: [text]
 Repeats zero or more times: [text]…
 Repeats one or more times: <symbol>…
 Pipe separates alternatives: opt1 | opt2
 Comments in italics

<source file>:
 do ([<imp>]... [<def glb>] [<def>]...

[<class>]...)

<imp>:
<import stmt> ;

<import stmt>:
import <module>...
from <rel module> import <mod list>
from <rel module> import all

<module>:
<name>
(: <name><name>...)
(as <name><name>)
(as (: <name><name>...) <name>)

<mod list>:
<id as>...

<id as>:
<mod id>
(as <mod id><name>)

<mod id>:
<mod name>
<class name>
<func name>
<var name>

<rel module>:
(: [<num>] [<name>]...)
<name> // ?

<cls typ>:
class
iclass

<hedron>:
hedron
ihedron

<class>:
 <cls typ><name> [<base class>] [<does>]

[<vars>] [<ivars>] do (<def>…) ;
 abclass <name> [<base class>] [<does>]

[<vars>] [<ivars>] do (<anydef>…) ;
 <hedron><name> [<does>] [<const list>] do

([<abdef>]... [<defimp>]...) ;
 enum <name><elist> ;
 ienum <name><elist> ;

<does>:
(does <hedron name>...)

<hedron name>:
<base class>:

<name>
(: <name><name>…)

<const list>:
(const <const pair>...)

<const pair>:
(<name><const expr>)

<def glb>:
gdefun [<vars>] [<ivars>] do <block> ;

<def>:
 <defun> (<name> [<parms>]) [<vars>]

[<gvars>] [<dec>] do <block> ;

<defimp>:
 defimp (<name> [<parms>]) [<vars>]

[<gvars>] [<dec>] do <block> ;

<abdef>:
abdefun (<name> [<parms>]) [<dec>] ;

<defun>:
defun
idefun

<anydef>:
<def>
<abdef>

Page 6

<vars>:
(var [<id>]...)

<ivars>:
(ivar [<id>]...)

<gvars>:
(gvar [<id>]...)

<parms>:
[<id>]... [<parm>]... [(* <id>)] [(** <id>)]

<parm>:
(<set op><id><const expr>)

<dec>:
(decor <dec expr>...)

<block>:
([<stmt-semi>]…)

<stmt-semi>:
<stmt> ;

<jump stmt>:
<continue stmt>
<break stmt>
<return stmt>
return <expr>
<raise stmt>

<raise stmt>:
raise [<expr> [from <expr>]]

<stmt>:
<if stmt>
<while stmt>
<for stmt>
<switch stmt>
<try stmt>
<asst stmt>
<del stmt>
<jump stmt>
<call stmt>
<print stmt>
<bool stmt>

<call expr>:
 (<name> [<arg list>])
 (: <colon expr>… <name>)
 (: <colon expr>… (<method name>

[<arg list>]))
 (:: <colon expr>… <name> else <expr>)
 (:: <colon expr>… (<method name>

[<arg list>]) else <expr>)
 (call <expr> [<arg list>])

<call stmt>:
 <name> [<arg list>]
 : <colon expr>… (<method name>

[<arg list>])
 call <expr> [<arg list>]

<colon expr>:
<name>
(<name> [<arg list>])

<arg list>:
[<expr>]... [(<set op><id><expr>)]...

<dec expr>:
<name>
(<name><id>...)
(: <name><id>...)
(: <name>... (<id>...))

<dot op>:
dot | :

<dotnull op>:
dotnull | ::

<del stmt>:
del <expr>

<set op>:
set | =

<asst stmt>:
<asst op><target expr><expr>
<set op> (tuple <target expr>...) <expr>
<inc op><name>

<asst op>:
set | addset | minusset | mpyset | divset |
idivset | modset |
shlset | shrset | shruset |
andbset | xorbset | orbset |
andset | xorset | orset |
= | += | -= | *= | /= |
//= | %= |
<<= | >>= | >>>= |
&= | ^= | '|=' |
&&= | ^^= | '||='

<target expr>:
<name>
(: <colon expr>… <name>)
(slice <arr><expr> [<expr>])
(slice <arr><expr> all)
(<crop><cons expr>)

<arr>: // string or array/list
<name>
<expr>

Page 7

<if stmt>:
 if <expr> do <block> [elif <expr> do <block>]…

[else do <block>]

<while stmt>:
while <expr> do <block>
while do <block> until <expr>

<for stmt>:
 for <name> [<idx var>] in <expr> do <block>
 for (<bool stmt>; <bool stmt>; < bool stmt>)

do <block>

<try stmt>:
 try do <block> <except clause>… [else do

<block>] [eotry do <block>]
 try do <block> eotry do <block>

<except clause>:
except <name> [as <name>] do <block>

<bool stmt>:
quest [<expr>]
? [<expr>]
<asst stmt>

<switch stmt>:
switch <expr><case body> [else do <block>]

<case body>:
[case <id> do <block>]...
[case <dec int> do <block>]...
[case <str lit> do <block>]...
[case <tuple expr> do <block>]...

<return stmt>:
return

<break stmt>:
break

<continue stmt>:
continue

<paren stmt>:
(<stmt>)

<qblock>:
(quote [<paren stmt>]...)

<quest>:
quest | ?

<inc op>:
incint | decint | ++ | --

<expr>:
<keyword const>
<literal>
<name>
(<unary op><expr>)
(<bin op><expr><expr>)
(<multi op><expr><expr>…)
(<quest><expr><expr><expr>)
<lambda>
(quote <expr>...)
<cons expr>
<tuple expr>
<list expr>
<dict expr>
<venum expr>
<string expr>
<bytes expr>
<target expr>
<call expr>
<cast>

<unary op>:
minus | notbitz | not |
- | ~ | !

<bin op>:
<arith op>
<comparison op>
<shift op>
<bitwise op>
<boolean op>

<arith op>:
div | idiv | mod | mpy | add | minus |
/ | // | % | * | + | -

<comparison op>:
ge | le | gt | lt | eq | ne | is | in |
>= | <= | > | < | == | !=

<shift op>:
shl | shr | shru |
<< | >> | >>>

Note: some operators delimited with
single quotes for clarity
(quotes omitted in source code)

<bitwise op>:
andbitz | xorbitz | orbitz |
& | ^ | '|'

<boolean op>:
and | xor | or |
&& | ^^ | '||'

Page 8

<multi op>:
mpy | add | strdo | strcat |
and | xor | andbitz | xorbitz |
or | orbitz |
* | + | % | + |
&& | ^^ | & | ^ |
'||' | '|'

<const expr>:
<literal>
<keyword const>

<literal>:
<num lit>
<str lit>
<bytes lit>

<cons expr>:
(cons <expr><expr>)
(<crop><expr>)

<tuple expr>:
(tuple [<expr>]…)
(<literal> [<expr>]…)
()

<list expr>:
(jist [<expr>]…)

<dict expr>:
(dict [<pair>]…)

<pair>:
// expr1 is a string
(: <expr1><expr2>)
(: <str lit><expr>)

<venum expr>:
(venum <enum name> [<elist>])
(venum <enum name><idpair>...)

<elist>:
<id>...
<intpair>...
<chpair>...

<intpair>
// integer constant
<int const>
(: <int const><int const>)

<chpair>
// one-char. string
<char lit>
(: <char lit><char lit>)

<idpair>
<id>
(: <id><id>)

<cast>:
(cast <literal><expr>)
(cast <class name><expr>)

<print stmt>: // built-in func
print <expr>…
println [<expr>]…
echo <expr>…

<lambda>:
(lambda ([<id>]...) <expr>)
(lambda ([<id>]...) do <block>)
(lambdaq ([<id>]...) do <qblock>)
// must pass qblock thru compile func

No white space allowed between tokens, for rest
of Euphegram Grammar

<white space>:
<white token>...

<white token>:
<white char>
<line-comment>
<blk-comment>

<line-comment>:
[<char>]... <new-line>

<blk-comment>:
{ [<char>]... }

<white char>:
<space> | <tab> | <new-line>

<name>:
 [<underscore>]… <letter> [<alnum>]…

[<hyphen-alnum>]… [<underscore>]…

<hyphen-alnum>:
<hyphen><alnum>…

<alnum>:
<letter>
<digit>

Page 9

In plain English, names begin and end with zero or
more underscores. In between is a letter followed
by zero or more alphanumeric characters. Names
may also contain hyphens, where each hyphen is
preceded and succeeded by an alphanumeric
character.

<num lit>:
<dec int>
<long int>
<oct int>
<hex int>
<bin int>
<float>

<dec int>:
[<hyphen>] 0
[<hyphen>] <any digit except 0> [<digit>]…

<long int>:
<dec int> L

<float>:
<dec int><fraction> [<exponent>]
<dec int><exponent>

<fraction>:
<dot> [<digit>]…

<exponent>:
<e> [<sign>] <digit>…

<e>:
e | E

<sign>:
+ | -

<keyword const>:
null
true
false

<oct int>:
0o <octal digit>…

<hex int>:
0x <hex digit>…
0X <hex digit>…

<bin int>:
0b <zero or one>…
0B <zero or one>…

<octal digit>:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<hex digit>:
<digit>

A | B | C | D | E | F
a | b | c | d | e | f

<str lit>:
" [<str item>]... "

<str item>:
<str char>
<escaped str char>
<str newline>

<str char>:
any source char. except "\", newline, or
end quote

<str newline>:
\ <newline> [<white space>] "

<escaped char>:
\\ backslash
\" double quote
\} close brace
\a bell
\b backspace
\f formfeed
\n new line
\r carriage return
\t tab
\v vertical tab
\ooo octal value = ooo
\xhh hex value = hh

<escaped str char>:
<escaped char>
\N{name} Unicode char. = name
\uxxxx hex value (16-bit) = xxxx

<crop>:
c <crmid>... r

<crmid>:
a | d

Page 10

Not implemented: string prefix and bytes data type
(rest of grammar)

<str lit>:
[$ <str prefix>] <quoted str>

<str prefix>:
r | R

<quoted str>:
" [<str item>]... "

<bytes lit>:
$ <byte prefix><quoted bytes>

<byte prefix>: // any case/order
b | br

<quoted bytes>:
" [<bytes item>]... "

<bytes item>:
<bytes char>
<escaped char>
<str newline>

<bytes char>:
any ASCII char. except "\", newline, or
end quote

Page 11

	Euphesta
	Terminology
	Competition
	Monospaced Mode
	Euphegram to Java
	Exit Strategy
	Revenue and Expenses
	Hosting Fees
	Contributors
	About Us
	Contact Info
	Implementation Steps
	Eupheteach
	Euphegrid
	Expression Language
	Computer Demos
	Advanced Euphegrid Commands
	Superscripts
	Euphegram
	Special Characters
	Differences from Python
	Keyboard Aid
	EGML
	Euphegram Grammar
	Grammar Notation

