Nuts and Bolts

[ Go Back |

Low Level

This web page/document includes miscellaneous low-level details (Alastair, Brian, and Sam can safely
ignore it) in regards to JynoLisp implementation, some of which are obsolete.

Public Fields

Public fields are JynoLisp fields (method variables) which are declared in a var block, whereas private
(inner) fields are declared in an ivar block. Public fields which include getters and/or setters cannot be
modified directly using an assignment statement, except within the class in which they are declared. For a
field called myfield, the corresponding getter method is called get-myfield, and the corresponding setter
method is called set-myfield. For a boolean field called myfield, the corresponding getter method is called
is-myfield. For a boolean field called is-myfield, the corresponding getter method is called get-myfield.

JynoLisp Parsing

Parser uses following sets of initial chars. (in
parentheses or on separate line) to help determine
class of tokens encountered.

* Alpha:
o keyword (a-z)
o built-in function (a-z)
o gystem function* (_)
* ldentifiers:
o local variable (A-Z, )
o field (A-Z, )
o method (A-Z,_)
o class (A-Z, )

*  Numeric:
o 0-9’ -
e Punctuation:
© (l )l {l }l #! "l $! 1
*  Operators:
o+ - %%, & |~ = L<>007
e Invalid:

o Literal Chars. (\,.)
o Symbols ([,],',", @, comma)

* System function names begin and end with 2
consecutive underscores. User-defined identifiers

begin with optional single underscore followed by a

letter, and may contain letters of both cases. The
other 3 types of identifiers (keywords, built-in
functions, system functions) contain lower case
letters only.

Oddball characters:

(\) backslash found only in string literals
(.) period found only in numeric literals

(-) hyphen found at beginning of numeric
literals and 3 operators: negate, subtract, -=
(}) close brace in string literal must be
escaped

Page 1


http://treenimation.net/jynolisp/more.html

Lexical Scanner (Summary)

Each bottom-level category followed by (n), where
n = count, category omitted if zero.

ALPHA

(e]

o

o

o

KEYWORD
BLTINFUNC
SYSFUNC
IDENTIFIER

NUMERIC

BINARY
OCTAL
HEXADECIMAL
DECIMAL
LONG

FLOAT

PUNCT

OPENPAR
CLOSEPAR
SEMICOLON
CMTLINE
CMTBLK
STRLIT
OPERATOR

INVALID

o

(e]

o

ERRSYM
ERRESC
ERRDOT

Error messages:

(e]

Line no., description

Lexical Scanner (Detail)
LN # TYP VAL CNV

XXX XXX XXX
0001 [ line buf one ]
KWD str op
FUN str
SYS str
ID str
0002 [ line buf two ]
BIN str dec
OCT str dec
HEX str dec
DEC dec dec
LNG dec dec
FLT str val
0003 [ line buf three ]
PAR (
PAR )
PAR ;
CMT {
CMT }
CMT #
STR str
OP str name
ERR str desc
[ omit blank lines ]

Each 4-digit line no. followed by
contents of line in square brackets,
followed by tokens, one per line.
Global boolean: summary/detail

Page 2



Code Execution

All JynoLisp source code is in Polish notation, in which operators precede their operands. The following
algorithm is used, in which operators are stored in one stack and operands in a separate stack.
Executable code consists of tree nodes.

rightp = root
while true do
if rightp = 0 then
Op = pop operator
if op = root then
return true
if op = while/for/loopbody then
pop rightp from operator stack
continue
if op = if then
pop rightp from operator stack
pop (
continue
if op = block then
pop (
pop if from operator stack
pop (
pop rightp from operator stack
continue
count = 0
while true do
pop operand
if open parenthesis then break
push operand on operator stack
increment count
if op = call then
rightp = handlecall(count)
continue
if op = constructor then
rightp = handlecons(count)
continue
if op = callback then
rightp = handlecallback(count)
continue
pop operand from operator stack
push operand
repeat count - 1 times
pop operand from operator stack
push operand
rightpop = pop
leftpop = pop
push op(leftpop, rightpop)
// (: obj attridx) => obj...
if count = 1 then
if unary op then

push op(pop)
else

rightpop = pop

Page 3



leftpop = pop
push op(leftpop, rightpop)
pop rightp from operator stack
continue
currnode = getnode(rightp)
if open parenthesis then
push on operand stack
push rightp on operator stack
rightp = currnode.downp
else if operand then
push on operand stack
rightp = currnode.rightp
else if operator then
push on operator stack
rightp = currnode.rightp
else if funcbody then
handlebody
rightp = currnode.rightp
else if endfunc then
pop downto begin from operator stack
pop rightp from operator stack
else if while/for then
rightp = currnode.rightp
push rightp, while/for on operator stack
else if do then
flag = pop
if not flag then
pop while, rightp from operator stack
pop rightp from operator stack
pop (
else if continue then
pop downto while from operator stack
pop rightp from operator stack
else if break then
pop downto while from operator stack
pop rightp, rightp from operator stack
pop (
else if breakfor then
pop downto for from operator stack
pop rightp, rightp from operator stack
pop (
pop (
else if contfor then
pop downto loopbody from operator stack
pop rightp from operator stack
else if then then
flag = pop
if flag then
rightp = currnode.rightp
else
pop if from operator stack
pop (
pop rightp from operator stack

Page 4



else
return false

pop downto x from operator stack: // handle pop-downto

pop multiple from operator stack
if: pop (
while: pop (

do block while flag: // handle do-while loop
while true do block if not flag then break

handlecons(count):
pop classref from operator stack
gen objref: root 0/1 = instance/class vars
push objref on operator stack
return handlecall(count)

handlecall (count):
pop objref from operator stack
push objref
pop codept from operator stack
return handlecodept(codept, count)

handlecodept (codept, count):
repeat count - 2 times
pop val from operator stack
push val
push count - 1
return codept

handlecallback(count):
pop callback from operator stack
unpack objref, codept
push objref
return handlecodept(codept, count)

Page 5



	Nuts and Bolts
	Low Level
	Public Fields
	JynoLisp Parsing
	Lexical Scanner (Summary)
	Lexical Scanner (Detail)
	Code Execution


