
Mike Hahn – hahnbytes@gmail.com

Lyvathon
Lyvathon is a platform that hosts and monetizes web apps, and includes 2 brand-new open source
languages: Lyvathon (similar to Python), and LVM (similar to HTML). Eventually Lyvathon-based web
apps will be hosted at Lyvware.com. Lyvathon is implemented using Python, Flask, and MySQL. Future
versions of Lyvathon include a search engine which indexes LVM body text.

Language Features

Lyvathon is a statically typed Python work-alike (with some features of Java), but has Lisp-like syntax. All
program code in memory is stored in 12-byte nodes, and arrays are implemented using binary trees or
linked lists. Lyvathon Markup Language (LVM) includes tags enclosed in brace brackets. The tag name
(and any optional arguments) is terminated by a vertical bar (|), in case there is any body text prior to the
closing brace bracket. Some tags include multiple blocks of body text separated with vertical bars (the left
vertical bar of each block is preceded by optional arguments). Lyvathon is used for both client-side and
server-side code (client-side code is converted to JavaScript at compile time, and LVM is converted to
HTML at run time).

Business Model

All end-users are either subscribers or non-subscribers. Subscribers pay $20/year for the privilege of
accessing features and apps unavailable to non-subscribers. Some end-users are also employees (team
members). Companies which employ team members pay data usage fees and are users of team-based
apps. The data usage fee is proportional to the weighted sum of 3 counters maintained for each team
member: no. of megapixels (in images downloaded), no. of Lyvathon/LVM tokens, and no. of new
Lyvathon 12-byte nodes created. All counters are reset to zero at the end of each month.

Lyvathon users who are owners of web apps receive 50 percent of the data usage fees. Owners of
consumer apps (as opposed to team-based apps) receive 50 percent of the data usage fees utilized by
subscribers when accessing those consumer apps. Owners of team-based apps receive 50 percent of the
data usage fees utilized by employees (team members) when accessing those team-based apps. All app
owners pay app hosting fees of $10 per year per public app (or just $2 per year for the 6th and each
subsequent public app). Every team-based app owner pays an additional amount equal to that owner's
share of the data usage fees utilized by non-subscribers when accessing consumer apps. All app owners
who choose to make use of Google AdSense ads in their apps receive 100 percent of that revenue.

About Me

I am Mike Hahn, the founder of Lyvware.com. On August 9, 2014 I began working on AppaTeach (a
tutoring website). I started developing Lyvathon on January 4, 2015, after dabbling in its precursors
(sporadically) since the mid 90s. On January 24, 2015 I resumed working on AppaTeach, and resumed
working on Lyvathon on May 9, 2015. I started designing Lyvware on August 18, 2015, and implementing
it 12 days later. I was previously employed at Brooklyn Computer Systems as a Delphi Programmer and a
Technical Writer (I worked there between 1996 and 2013). Just prior to starting Lyvathon I quit my job as
a volunteer tutor at Fred Victor on Tuesday afternoons, where for 5 years I taught math, computers, and
literacy. I'm now a volunteer computer tutor at West Neighbourhood House. My hobbies are reading the
news at cbc.ca and going for walks in my neighbourhood. About twice a year I get together with my sister
who lives in Victoria. She comes here or I go out there usually in the summer. At those times I'm much
more active, but most of the year I tend to lie on the couch a lot, and not be very active. I do, however,
visit my brother once a month or so and listen to or visit my disabled friend (she has schizophrenia and
talks to me on the phone).

Page 1

http://treenimation.net/lyvathon/index.html
http://www.westnh.org/
http://www.fredvictor.org/
http://www.bcsint.com/

Data Usage Fees

Let s1[i] = megapixel count for subscribers of i-th app

Let s2[i] = token count for subscribers of i-th app

Let s3[i] = node count for subscribers of i-th app

Let n1[i] = megapixel count for non-subscribers of i-th app

Let n2[i] = token count for non-subscribers of i-th app

Let n3[i] = node count for non-subscribers of i-th app

Let e1[i,j] = megapixel count for employees of i-th team app, j-th team

Let e2[i,j] = token count for employees of i-th team app, j-th team

Let e3[i,j] = node count for employees of i-th team app, j-th team

Let a1 = megapixel weight factor

Let a2 = token weight factor

Let a3 = node weight factor

Let s[i] = data usage fee per month, for subscribers of i-th app

Let n[i] = data usage fee per month, for non-subscribers of i-th app

Let e[i,j] = data usage fee per month, for subscribers of i-th app, j-th team

Then s[i] = a1s1[i] + a2s2[i] + a3s3[i]

And n[i] = a1n1[i] + a2n2[i] + a3n3[i]

And e[i,j] = a1e1[i,j] + a2e2[i,j] + a3e3[i,j]

Let k = no. of teams

Let m = no. of consumer apps

Let n = no. of team apps

Let C = total costs per month

Let E = team-based costs per month

Then E = SUM(j=1,k: SUM(i=1,n: e[i,j]))

And C = SUM(i=1,m: s[i] + n[i]) + E

Let p = public app fee = $10/year

Let r = subscriber rate = $20/year

Let q = no. of subscribers

Then qr/12 = SUM(i=1,m: s[i])

Let t[j] = revenue from j-th team

Then SUM(j=1,n: t[j]) = SUM(i=1,m: n[i]) + E

And t[j] = SUM(i=1,n: e[i,j])(1 + (SUM(i=1,m: n[i]) / E))

Let u[i] = cost of i-th consumer application, per month

Let v[i] = cost of i-th team app, per month

Then u[i] = (0.5)s[i]

And v[i] = (0.5)SUM(i=1,n: SUM(j=1,k: e[i,j]))

Page 2

Database Tables

Users

• usrid
• empid
• flags:

◦ active
◦ subscriber
◦ employee
◦ developer

• username
• firstname
• lastname
• password
• email
• altemail
• phone
• question1,2
• answer1,2
• customq
• balance
• joindate
• expirydate
• leavedate
• wordcount
• pixelcount
• nodecount

Emps

• empid
• usrid
• phone
• cell
• fax
• email
• web
• addr1
• addr2
• city
• state
• country
• postalcode

Orgs

• orgid
• temid
• name
• tradename

Teams

• temid
• orgid
• parid
• nextid
• childid
• empid
• supid
• name

Projects

• prjid
• temid
• appid
• name
• title
• descr
• isapp

Uorg

• usrid
• orgid
• startdate
• active

Uteam

• usrid
• temid
• title
• rank
• startdate
• active

Uproj

• usrid
• temid
• prjid
• title
• rank
• startdate
• active

Page 3

Contact Info

Mike Hahn
Founder, Lyvware.com
515-2495 Dundas St. West
Toronto, ON M6P 1X4

Country: Canada
Phone: 416-533-4417
Email: hahnbytes (AT) gmail (DOT) com
Blog: lyvathon.blogspot.ca

Lyvaic

Lyvaic is the first sample Lyvathon project: an image-collection manager. Image files are stored in folders,
which may contain other folders recursively, and are displayed in mosaic form (like a grid). Clicking on an
image enlarges it to full size. Slides containing multiple images can be created and grouped into slide
shows. Images can have captions and folders can have descriptions (folders about a person include that
person's name). Images in slides have a zoom factor (zoom in or out). Images consist of either files on
the server or links to external sites.

Public and Private

Every user has zero or more followers. Every user has a static tree of slides, and each folder in the tree
can be public, followers only, or a specific follower.

Lyvaic Modes

1. Mosaic - grid of images/folders belonging to a folder
2. Slide-Grid - grid of slides, 1 to 3 images side-by-side, terminated by a vertical black line on a

white background
3. Mono - single full-size image, possibly filling available screen space
4. Slide - group of 1 to 3 images, side-by-side, filling available screen space

Commands

Z - Undo
X - Cut
C - Copy
V - Paste
D - Delete
T - Toggle Slide/Mono or Slide-Grid/Mosaic
N - Insert new image/folder
E - Edit properties:

Folder - folder properties
File,
Mono - images (path, filename properties)

K - Show/hide kaption
S - Search images
Q - Quit (logout)
Shift+Z - Redo
Shift+C - Select/deselect multiple
Shift+K - Show/hide all kaptions
Minus (-) - Zoom out
Plus (+) - Zoom in
Equals (=) - Zoom in
Zero (0) - Cancel zoom
F1 - Rotate: help page, hide, show menu (default)

Arrow - Select in grid
Left Arrow - Previous mono/slide
Right Arrow - Next mono/slide
Up Arrow - Previous image in slide
Down Arrow - Next image in slide
Click or Enter:

Folder - expand folder
File - go to Mono
Slide-Grid - go to Slide
Mono - go to Mosaic/Slide-Grid
Slide - go to Mono

Esc - go to parent folder

Page 4

Lyvaic Database

Users

• usrid
• ctgid

Folders

• ctgid
• usrid
• parid
• nextid
• childid
• filid
• sldid
• imcid
• name
• descr
• public
• flwid

Files

• filid
• ctgid
• usrid
• nextid
• imgid

Images

• imgid
• usrid
• imcid
• width
• height
• isurl
• path
• filename
• caption

Followers

• id
• srcid
• dstid

Clicks

• id
• imgid
• year
• month
• clkcount

Slides

• sldid
• usrid
• ctgid
• nextid
• previd
• celid

Cells

• celid
• sldid
• nextid

Imghdrs

• imhid
• imgid
• zoom
• left
• top

Imgclasses

• imcid
• usrid
• parid
• nextid
• childid
• clsname

Imgfields

• imfid
• imcid
• fldno
• fldname

Imgvalues

• id
• imfid
• imgid
• isfolder
• value

Note: all database tables (except followers) need a
usrid field.

Page 5

LVM Format

Heading ==, ===, ...
Bold/Italics/both '', ''', ''''
Numbered List #, ##, ...
Bulleted List *, **, ...
Container Tag { ... | ... }
Table/Grid/Tag { ... }
Open Row {row

{row fld=val
Close Row }
Open Column ||

|fld=val|
|f1=v1;f2=v2;...|

Vert. Grid Line \|
Horiz. Grid Line underscore (_)
Grid Intersection plus (+)
Escape Char. backslash (\)
Lyvathon Code {% ... %}
Lyvathon Expr. {{ ... }}
Tags:

• table, row, grid, dtab, meta
• super, sub, text, pre, br, hr, img, a, ch
• input, radio, checkbox
• styles, include, h1..h5, b, i, u, ol, ul

Fields:
• width=50/0.5 (pixels/ratio)
• pad=50/0.5
• x, y = 50/0.5
• height = n (pixels)
• topb=1 (pixels)
• bottomb, leftb, rightb, midb = 1
• color=FF00FF (rgb)
• fcolor=00FF00 (text)
• bcolor=000000 (borders)
• colspan, rowspan = n
• just="L/C/R"
• b, i, u (bold, italics, underline)
• same (same as previous)
• vis (visible)
• coldefs
• rows, cols = n (grid size)
• id="mynode", id="mytag"

Implementation Steps

1. Lyvaic:
1. Finish user authentication
2. Implement image collection manager
3. Post help-wanted notice on SourceForge
4. Implement Lyvathon (console mode)
5. Combine Lyvathon with Flask
6. Convert image collection manager from Python to Lyvathon

2. Lyvathon:
1. Flask-based SDK written in Python using Linux
2. Assembler: LVA >> LVC
3. LYvathon Runtime Environment (LYRE): run LVC code
4. Compiler: LV >> [LVA] >> LVC
5. Support try stmts.
6. Converter: LV >> JS (client-side version)
7. Lyvathon software is open source

3. LyvAIDE:
1. LyvAthon Integrated Development Environment
2. Written in Python using Linux/Windows
3. LVM Rendering >> display UI
4. LVM/LV Editor
5. GUI Editor: display UI >> LVM
6. Syntax Highlighting
7. Unlimited Undo/Redo
8. Debugger
9. Monetization: sell web hosting for sites written in Lyvathon and LVM
10. LyvAIDE software is open source

Page 6

Join Our Team

The open source Lyvathon project needs volunteer Python programmers to contribute to the project. Here
is a list of tasks which are all implemented using Python (except Step 3). The first task is reserved for
Mike, the Founder of Lyvathon.org.

1. Lyvathon Compiler
2. Converter: LVM >> HTML
3. Write LVM full specs
4. LVM Code Editor
5. LVM WYSIWYG Editor
6. LyvAIDE: fancier Lyvathon Code Editor
7. Convert image collection manager: Python >> Lyvathon
8. Monetization
9. Search Engine: indexes LVM body text
10. Apache/MySQL Integration

If you wish to contribute to this project, please contact me. If you have any preferences as to which of the
above tasks you wish to work on, please indicate up to 3 choices ranked from most preferred to least
preferred. Thank you for your interest in the Lyvathon project.

Page 7

	Lyvathon
	Language Features
	Business Model
	About Me
	Data Usage Fees
	Database Tables
	Contact Info
	Lyvaic
	Public and Private
	Lyvaic Modes
	Commands
	Lyvaic Database
	LVM Format
	Implementation Steps
	Join Our Team

