Mike Hahn — hahnbytes@gmail.com
Sharebitor

Sharebitor is a tool used by content publishers. The content lives in the Dropbox folders of the content
publishers, and is made dynamic by apps written in an open source Python-like language called
Sharebitalk (along with a markup language called Sharebitags). Content consumers search for content on
the (closed source) Sharebitor.com website, and then link to the Dropbox folders of the content
publishers. To view the content, the content consumer starts up the Sharebitor local web server and
points her browser to localhost, after copying the content to her local drive. Sharebitalk is written in Java
and works with a web container called Jetty.

Business Model

Subscribers pay $15 per year and are allowed to publish content (subscribers who are content consumers
pay just $10 per year). App-writers pay no fees and receive all Google AdSense revenue when users click
on ads displayed at Sharebitor.com. The ads appear on the app home screen or on those screens which
include a link to the corresponding app. All basic apps are ranked according to the ratio of users who are
subscribers to users who are non-subscribers. Apps in the topmost quartile (the most subscribers) receive
a bonus equal to 100 percent of their AdSense revenue. Apps in the next quartile receive a bonus of 50
percent of that revenue. (Note that most Sharebitor users are non-subscribers, who pay no fees.)

Premium Apps

Premium apps (as opposed to basic apps) incur activation fees (or even additional app-specific
subscription fees) and/or support in-app purchases. Only subscribers can use these apps, and pay the
activation fees (and/or additional fees) to the app-writers. All in-app purchases require the input of a PIN
number. If the PIN number is forgotten or needs to be changed, an email is sent to the account holder that
includes a 5-digit code, which must be entered prior to resetting the PIN number. Both basic and premium
apps have a corresponding subdomain, i.e. sample.sharebitor.com (so Pixtibil, the flagship app which is
an image organizer, can eventually be found at pixtibil.sharebitor.com).

Cheap to Publish Content

For one low price of $15 per year, content publishers can publish as much content as they want, using as
many apps as they want. Hosting is cheap, since the content lives in Dropbox folders, not on the web. For
those content publishers who are coders, or who have access to coders, Sharebitor is a very inexpensive
way to create dynamic web-oriented content. It's free to be an app-writer, and app-writers also receive
Google AdSense revenue. Apps can be written in Sharebitalk or Java.

About the Name

Sharebitor rhymes with orbiter, except the first syllable is share instead of or. Sharebitalk and Sharebitags
have a similar pronunciation to Sharebitor, except the final syllable replaces the "ter" sound with talk and
tags, respectively. Sharebitor lets content publishers share their data (bits) with content consumers.

Conventional Websites

Ordinary (non-localhost) websites can be developed using Sharebitalk and Sharebitags, using 2
converters: Sharebitags-to-HTML and Sharebitalk-to-JavaScript. Server-side code is written in
Sharebitalk.

Page 1

http://treenimation.net/sharebitor/index.html

Monospace Mode

In monospace mode, all body text rendered to the browsers of end-users in every Sharebitor app is in a
mono-spaced, typewriter-style font. Every character takes up 2 square cells: an upper cell and a lower
cell. Superscripts and subscripts are handled by employing a vertical offset of one square cell. Header
text is also mono-spaced, and each character takes up 2 oversized square cells.

Additional Formatting

The grid of characters can be subdivided into panels, which can themselves be subdivided into more
panels, and so on. Any panel can contain zero or more text boxes, which may overlap each other. Vertical
grid lines each take up one square cell per row of square cells. Horizontal grid lines are displayed in the
same pixel row as underscore characters. Any row of square cells containing a horizontal grid line which
is 2 pixels wide is taller by exactly one pixel. The following bracket characters: () []{} can be oriented
vertically or horizontally, taking up a single column or row of at least 2 square cells, respectively. Widgets
such as check boxes, radio buttons, and combo box arrows take up 4 square cells (2 by 2). Images,
animations, and diagrams are contained in canvas objects, which can appear anywhere panels can
appear.

Rich-Text Mode

In rich-text mode, a given header or paragraph of body text can consist of a single variable-width font.
Paragraphs have before/after spacing, left/right indent, and line spacing (single, double, 1.5, etc.). Panels
have margins on all 4 sides. Beginner app-writers start off with monospace mode, and then advance to
rich-text mode. In both rich-text and monospace modes, text is rendered to the HTML5 canvas object.
Some features like form fields and submit buttons use normal HTML.

Console Mode

User enters command-line in a text input field. Sharebitor displays zero or more lines of output. When
input from the user is needed, another text input field is displayed. Entering a single space in the text
input field causes a page refresh, in which all lines of output between the current and previous text input
fields are redisplayed at the top of the current web page. Entering a single space when nothing else is
displayed on the current web page causes Sharebitor to cease execution.

Security

Any time Sharebitalk code (belonging to an app called "myappname") accesses the user's local drive,
only relative path names are permitted. The path name (call it mypath) begins with
"sharebitor/app/myappname/". The full path name begins with the path to wherever Sharebitor is installed,
concatenated with mypath. Sharebitalk is the "secret sauce" of Sharebitor: users can download any and
all apps without fear of malware, due to the above security feature built in to Sharebitalk. Sharebitor itself
is a special app, written in Sharebitalk/tags like regular apps.

Page 2

Implementation Steps

Project evaluation by Alastair, Sam Davis
Implement Sharebitalk Assembler
Implement SharebiTalk Runtime Environment (STRE)
Implement Sharebitalk Compiler
Implement Console mode
Implement Team Monitor
Cold email Toronto/Vancouver-based GitHub members who use Java
Expand previous step to US and Canadian GitHub members (optional)
Relocate to Vancouver (optional)
10. Begin reading book: Java for Web Applications
11. Implement Monospace mode
12. Implement Rich-Text mode
13. Implement Sharebitags-to-HTML converter
14. Implement Sharebitalk-to-JavaScript converter
15. Implement Java API: write Sharebitor apps in Java
16. Convert Pixtibil (image organizer) from Python to Java
17. Convert Pixtibil from Java to Sharebitalk
18. Pixtibil uses both Monospace and then Rich-Text modes
19. Pixtibil advanced features
20. Code editors: Sharebitalk and Sharebitags
1. Eclipse plugins
2. Syntax highlighting, unlimited undo/redo
21. Graphical (WYSIWYG) Sharebitags editor
22. Sharebitor website
1. Dropbox support
2. Search published content (indexed text)
3. Cash flow: subscription fees, payments to app-writers/team members
23. Expand Sharebitalk libraries: widgets, graphics, games, math, etc.
24. Go live
25. Recruit beta testers
26. Purchase Google AdWords advertising
27. Support MMORPG functionality
28. Implement Android multiplayer game client

CoNorONE

Sample Apps

Image collection organizer « blogs ¢ e-commerce * shopping cart * catalogs « games « mmorpg °
multiplayer Android games - lessons (education) « edutainment « team collaboration « clubhouses -« self-
publishing ¢ the sky's the limit!

AdWords Phrases

1. image organizer 8. content publishing

2. end user programming 9. dropbox addon

3. new programming language 10. embedded web server

4. web programming language 11. freemium app

5. app authoring system 12. make your own games

6. app sdk 13. game development framework
7. app software development kit 14. web development framework

Page 3

Our Team

Those who know Java and wish to participate in Sharebitor development are more than welcome to read
up on our project and determine which aspects of Sharebitor development are of interest to them.
Sharebitor is mostly open source but includes a closed source component, therefore our team members
receive equity (profit sharing) but otherwise work on a volunteer basis. You would work from home and
are free to work lots of hours or very few hours, whatever is most convenient for you. Not all team
members receive the same amount of equity. Higher performing team members receive more equity than
team members who contribute to a lesser extent.

All team members fall into 3 categories: partners, associates, and entry-level members (ELMs). Partners
make substantial contributions to the project, ELMs make only trivial contributions, and associates are
somewhere in between. All partners, including Mike, the founder, receive the same amount of equity. All
associates receive an equal share of equity which adds up to the amount of equity received by 1.2
partners. The amount of equity received by each associate is capped at 40 percent of the amount of
equity received by each partner. Similarly, all ELMs receive an equal share of equity which adds up to the
amount of equity received by 1.2 associates. The amount of equity received by each ELM is capped at 40
percent of the amount of equity received by each associate. All team members are required to download
the Team Monitor application. Partners and associates must sign an employment agreement before they
are allowed to access the private repositories where the source code of the Sharebitor.com website is
maintained.

Team Monitor

The Team Monitor application is written in Java. The user selects from 7 open source projects:
Sharebitalk, Sharebitags, Monospace Mode, Rich-Text Mode, Sharebitalk Editor, Sharebitags Editor,
WYSIWYG Editor (as well as closed source projects pertaining to the website). The user indicates which
source files have been added/modified/deleted; the nature of the work: testing, debugging, adding new
code, writing design specs; descriptions of work performed; and the approximate amount of time spent on
each task. The user uploads Team Monitor data on a weekly basis.

About Me

I am Mike Hahn, the founder of Sharebitor.com. | was previously employed at Brooklyn Computer
Systems as a Delphi Programmer and a Technical Writer (I worked there between 1996 and 2013). At the
end of 2014 | quit my job as a volunteer tutor at Fred Victor on Tuesday afternoons, where for 5 years |
taught math, computers, and literacy. I'm now a volunteer math/computer tutor at West Neighbourhood
House. My hobbies are reading quora.com questions/answers and the news at cbc.ca. About twice a year
| get together with my sister Cathy who lives in Victoria. She comes here or | go out there usually in the
summer. Prior to starting Sharebitor | used to lie on the couch a lot, not being very active. Now I'm busy
most of the time. | visit my brother Dave once a month or so and | also visit my friends Main and Steph
once or twice a month.

Contact Info

Mike Hahn Country: Canada

Founder, Sharebitor.com Phone: 416-533-4417

515-2495 Dundas St. West Email: hahnbytes (AT) gmail (DOT) com
Toronto, ON M6P 1X4 Web: www.hahnbytes.com

Page 4

http://www.westnh.org/
http://www.westnh.org/
http://www.fredvictor.org/
http://www.bcsint.com/
http://www.bcsint.com/

Sharebitags Format

Simple Tag {<taghdr>}

Container Tag {<taghdr> | <body>}

Null Tag {| <body>}

List Tag {<taghdr> <list>}

Body List Tag {<taghdr> <bodlst>}

<bodlst> [| <body>1*

<list> [<col>]*

<col> | [<fldval>]* | <body>

<taghdr> <tagname> [<fldval>]*

<fldval> fldname=value;
fldname;

<body> body text

Comment {% ... %}

Escape Char. backslash (\)

Repetition: [XYZ 1*

XYZ repeats zero or more times

Tag Names:

Mono M

table, row, box, grid, borders

canvas, select, quote, rt, mono

super, sub, text, pre, br, hr, img, a, ch, p
input, radio, checkbox, meta, sbtk
styles, include, hl..h5, b, i, u, ol, ul, jy

ode:

body color fcolor (c/f)

panel c/f width height borders-tag

borders

o left right top bottom inner outer none
wleft wright wtop wbottom winner wouter
left=80ff44 right=0FF0000

wleft=0..2 wtop=0..2 (pixels)

table c/f width height left top borders-tag

o w/h/lft (cell squares, not pixels)

row c/f height borders-tag

o c/f width colspan rowspan borders-tag
box c/f width height left top borders-tag
grid c/f width height left top rowcount
colcount rowheight colwidth borders-tag
gridrow c/f height borders-tag

c/f width borders-tag

canvas c/f width height left top borders-tag
w/h/lI/t (pixels)

o

o

o

(e]

Fields (

old):

width=50/0.5 (pixels/ratio)
pad=50/0.5

X, y =50/0.5

height = n (pixels)

topb=1 (pixels)

bottomb, leftb, rightb, midb = 1
color=FFOO0FF (rgh)
fcolor=00FF0O0 (text)
bcolor=000000 (borders)
colspan, rowspan = n
just="L/C/R"

b, i, u (bold, italics, underline)
coldefs

rows, cols = n (grid size)
id="mynode", id="mytag"
onclick="mypage.sbtz"

Tags RT/Mono:

current and child panels use Rich-Text
mode, not monospace
mono overrides rt

Mono Mode (cont'd):

a

o href="mypage.sbtz"

o href="#label"

o href="somepage.sbtz#label"
o name="label"

o onclick="(myfunc a b ¢)"

img src width height left top alt borders-tag
o src="myicon.jpeg"

ch name/unicode

o Sigma

epsilon

nbsp

x03c7

just=0..2 (left/center/right)
valign=0..2 (top/center/bottom)
jy h=0..2 v=0..2

select

o ptexpr (int or bool)

1st, 2nd, 3rd, ...

sbtk: Sharebitalk code

e}
o}

o

(e]

Page 5

Sharebitalk

Sharebitalk is a Python dialect in which all operators precede their operands, and parentheses are used
for all grouping (except string literals, which as in Python are delimited with single or double quotes).
Sharebitalk code can be embedded in a Sharebitags text file. Sharebitags is similar to HTML, except
open tags begin with a brace bracket and a keyword, and the closing tag is simply a close brace bracket.
Any text enclosed in a tag is preceded by a vertical slash (]). File extensions include .SBTK (source
code), .SBTA (assembler code), .SBTC (compiled code), and .SBTZ (Sharebitags).

Keyboard Aid

This optional feature enables hyphens, open parentheses, and close parentheses to be entered by typing
semicolons, commas, and periods, respectively. When enabled, keyboard aid can be temporarily
suppressed by using the Ctrl key in conjunction with typing semicolons, commas, and periods (no
character substitution takes place). By convention, hyphens are used to separate words in multi-word
identifiers, but semicolons are easier to type than hyphens. Similarly, commas and periods are easier to
type than parentheses. When entering Sharebitags code, vertical slashes, open braces, and close braces
are entered by typing forward slashes, commas, and periods, respectively. Typing semicolon converts
previous hyphen to a semicolon, and previous semicolon to a hyphen (use the Ctrl key to override this
behaviour). Typing semicolon after close parenthesis simply inserts semicolon.

Special Characters Differences from Python
* () grouping » Parentheses, not whitespace
e —_ used inidentifiers * Integration with Sharebitags
* ; endof stmt. * Operators come before their operands
* : dotoperator * Single, not multiple inheritance
e "' string delimiters * Adds interfaces ("scool" defs.)
e \ escape char. » Drops iterators and generators
e # comment * Adds lambdas
e {* *} block comment * Adds quote and list-compile functions,
c {} Sharebitags code treating code as data

o *} treated as Sharebitags code
not block comment

Grammar Notation

e Non-terminal symbol: <symbol name>

e Optional text in brackets: [text]

e Repeats zero or more times: [text]...

e Repeats one or more times: <symbol name>...
e Pipe separates alternatives: optl | opt2

e Comments in italics

e Advanced features flagged as **

Compiler and Assembler

The Sharebitalk Compiler translates source code into compiled code, and optionally into assembler code.
Assembler code is an intermediate language which is much simpler than source code, although both
source code and assembler code are in the form of text files. During Sharebitalk development, the
developer uses the Sharebitalk Assembler, which converts assembler code (hand-written by the
developer) into compiled code. This is a necessary step enabling the JuppleTalk Runtime Environment
(JTRE) to be tested prior to the development of the Sharebitalk Compiler.

Page 6

Sharebitalk Grammar

White space occurs between tokens (parentheses
need no adjacent white space, also any
semicolon/hyphen before a close parenthesis may
be omitted):

<source file>:
e [<line-comment>] [<vars>] [do <block>] [<dec
def>]... [<class>]... [do <block>]

<import stmt>:
import <module>
import (<module>...)
from <rel module> import <mod list>
from <rel module> import all

<module>:
<name>
(<name> as <name>)
(: <name>... [as <name>])

<mod list>:
<id as>
(<idas>...)

<id as>:
<mod id>
(<mod id> as <name>)

<mod id>:
<mod name>
<class name>
<func name>
<var name>

<rel module>:
(<colon list> [xname>]...)
? <name>

<class>:

e (<cls typ> <name> [<base class>] [<does>]
[<vars>] do <dec def>...)

e (scool <name> [<does>] do [<const decl>]...
[<dec hdr>]...)

<cls typ>:
class
abclass

<does>:
does (<scool name>...)

<scool name>:
<base class>:
<name>
(: <name><name>...)

<const decl>:
const <name><const expr> ;

<dec hdr>:
[<dec>]... <def hdr>

<dec def>:
[<dec>]... <def>

<dec>:
@ <call expr>

<def hdr>:
def <var> ([<var>]...)

<def>:
e def <var> ([<var>]...) [<vars>] do <block>

<vars>:
var (<var>...)

<var>:
(<class name><id>)
<id>

<block>:
([<stmt-semi>]... [<stmt>])

<stmt-semi>:
<stmt><endchar>
<sbtz tag>

<endchar>:

<jump stmt>:
<continue stmt>
<break stmt>
<return stmt>

<pjump stmt>:
return <expr>
** <raise stmt>

<raise stmt>:
raise [<expr> [from <expr>]]

Page 7

<stmt>:
<open stmt>
<closed stmt>

<open stmt>:
<if stmt>
<while stmt>
<for stmt>
** <try stmt>
<pjump stmt>
<pcall stmt>
<asst stmt>
<del stmt>
<import stmt>

<closed stmt>:
<jump stmt>
<call stmt>
<print stmt>
<sbtz tag>

<sbtz tag>:

(.}

<call expr>:

e (<name> [<expr>]...)

e (:<objexpr> [<colon expr>]...
(<method name> [<expr>]...))

e (call <expr>...)

<call stmt>:
* (<name> [<expr>]...)

<pcall stmt>:

e : <objexpr> [<colon expr>]...
(<method name> [<expr>]...)

e call <expr>...

<colon expr>:
<name>
(<name> [<expr>]...)

<asst stmt>:
<asst op><name><expr>
<asst op><target expr><expr>

<asst op>:
set | addset | minusset | mpyset | divset |
idivset | modset | shiset | shrset |
andset | orset | xorset

<target expr>:
(: <name> [<colon expr>]... <name>)
(slice <arr><expr> [<expr>])
('slice <arr><expr> all)

<arr>: // string or array
<name>
<expr>

<obj expr>:
<name>
<call stmt>

<if stmt>:
e if <expr> do <block> [elif <expr> do <block>]...
else <block>]

<while stmt>:
while <expr> do <block>

<for stmt>:
for <name> in <expr> do <block>

<try stmt>:

e try <block> <except clause>... [else <block>]
[finally <block>]

e try <block> finally <block>

<except clause>:
except <name> [as <name>] <block>

<return stmt>:
return

<break stmt>:
break

<continue stmt>:
continue

<del stmt>:
del <expr>

<paren stmt>:
(<open stmt>)
<closed stmt>

<gblock>:
(quote [<paren stmt>]...)

Page 8

<expr>:
<keyword const>
<literal>
<name>
(<unary op><expr>)
(<bin op><expr><expr>)
(<multi op><expr><expr>...)
(quest <expr><expr><expr>)
<lambda>
(quote <expr>...)
<array expr>
<dict expr>
<bitarray expr>
<string expr>
<bytezero expr>
<bytes expr>
<target expr>
<obj expr>
<cast>

<unary op>:
minus negate
notbits bitwise not
not

<bin op>:
<arith op>
<comparison op>
<shift op>
<bitwise op>
<boolean op>

<arith op>:
div | idiv | mod | mpy | add | minus

<comparison op>:
gelle|gt|lt|eq|ne]is|in

<shift op>:
shl | shr

<bitwise op>:
andbits | orbits | xorbits

<boolean op>:
and | or | xor

<multi op>:
mpy | add | or | and |
strdo % operator
strcat + operator

<const expr>:
<literal>
<keyword const>

<literal>:
<num lit>
<string lit>
<bytes lit>

<array expr>:
(array [<expr>]...)

<bitarray expr>:
(bitarray <expr>)

<dict expr>:
(dict [<pair>]...)

<pair>:
(<name><expr>)
(<literal><expr>)

<cast>:
(cast <type><expr>)

<print stmt>: // built-in func
('print [<expr>]...)
(‘echo [<expr>]...)

<lambda>:
(lambda ([<id>]...) <expr>)
(lambda ([<id>]...) do <block>)
(lambda ([<id>]...) do <gblock>)
// must pass gblock thru compile func

No white space allowed between tokens, for rest
of Sharebitalk Grammar (text omitted for brevity).

Page 9

	Sharebitor
	Business Model
	Premium Apps
	Cheap to Publish Content
	About the Name
	Conventional Websites
	Monospace Mode
	Additional Formatting
	Rich-Text Mode
	Console Mode
	Security
	Implementation Steps
	Sample Apps
	AdWords Phrases
	Our Team
	Team Monitor
	About Me
	Contact Info
	Sharebitags Format

	Sharebitalk
	Keyboard Aid
	Special Characters
	Differences from Python
	Grammar Notation
	Compiler and Assembler
	Sharebitalk Grammar

